On homology theories in locally connected spaces II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of Locally Connected Topological Spaces

0.1. This paper presents an investigation of the following problem. Exhibit a class X of topological spaces which contains all peano spaces and which has the following properties: (1) a cyclic element theory exists in each space of the class, (2) the abstract set consisting of all cyclic element of any space X of the class can be topologized so as to be a member of the class X, and (3) the hype...

متن کامل

One Dimensional Locally Connected S - spaces ∗ Joan

We construct, assuming Jensen’s principle ♦, a one-dimensional locally connected hereditarily separable continuum without convergent sequences.

متن کامل

One Dimensional Locally Connected S - spaces ∗

We construct, assuming Jensen’s principle ♦, a one-dimensional locally connected hereditarily separable continuum without convergent sequences.

متن کامل

On the homology of locally compact spaces with ends

We propose a homology theory for locally compact spaces with ends in which the ends play a special role. The approach is motivated by results for graphs with ends, where it has been highly successful. But it was unclear how the original graph-theoretical definition could be captured in the usual language for homology theories, so as to make it applicable to more general spaces. In this paper we...

متن کامل

On Non-locally Connected Boundaries of Cat(0) Spaces

In this paper, we study CAT(0) spaces with nonlocally connected boundary. We give some condition of a CAT(0) space whose boundary is not locally connected.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica

سال: 1966

ISSN: 0066-1953

DOI: 10.5186/aasfm.1966.378